

LA-UR-18-26973

Approved for public release; distribution is unlimited.

Quantifying Uncertainty in the Space Weather Forecasting Title:

Author(s): Chakraborty, Shibaji Morley, Steven Karl

Intended for: Internal Presentation to ISR-1 group

Issued: 2018-07-26

Quantifying Uncertainty in Space Weather Forecasting

Probabilistic K_p Forecasting Model Shibaji Chakraborty, Steven Karl Morley

ISR-1 Space Weather Summer School, 2018

UNCLASSIFIED

About Me

- Shibaji Chakraborty
- 3rd Year Ph.D. student at SuperDARN group, Virginia Tech.
- Working with Dr. J. Michael Ruohoniemi & Dr. Joseph Baker.
- Research interest is effects & impacts of space weather on transionospheric HF communication.

Outline

- Introduction & Motivation
- Objectives
- K_p : 3h Range Index & Current State of the Art for K_p Forecasting
- Forecasting K_p using machine learning
 - Nonparametric-Bayesian approach for Uncertainty Quantification
 - Comparing Different Dynamic Linear Models:
 - GLM & Ensemble Models
 - Gaussian Process Regression.
 - Deep Gaussian Process.
- Probabilistic Storm Forecast
- Conclusion & Future Work

Introduction and Motivation

- Sun is the source of geomagnetic storms.
- Consequences of these solar wind driven storms can cost billions of dollars
- Hence forecasting space weather is a major challenge addressing the security of modern technology.
- In this study aims to provide a new method to forecast K_p with uncertainty bound associated with each prediction.

Objectives

- Provide a probabilistic geomagnetic storm forecast model.
- Provide an uncertainty quantification associated with prediction.
- Provide insights about the solar wind parameters and solar cycle and how they affect the coupling to the geospace environment.

K_p : 3h Range Index

What is K_p?

- a. K_p is a 3 hourly planetary range index.
- b. Presents
 disturbances in the
 of the Earth's
 magnetic field.
- c. Integer in the range0–9.

Importance of K_p in forecasting storms:

Used by SWPC to decide geomagnetic alerts and warnings need to be issued for users who are affected by these disturbances.

Current State of the Art for K_p Forecasting

1. K_p forecast models, S. Wing et. al., J. Geophys. Res.[Currently operational at NOAA SWPC]

Crux: Existing models forecasts K_p either from empirically-derived coupling functions to forecast short-term K_p , or neural networks for 3-to-12 hour ahead prediction. But none of them provides an **Uncertainty** associated with predicted K_p .

NOAA SWPC K_p and storm Forecast system

UNCLASSIFIED

Proposed Model

Characteristic:

- Subdivide the problem into two categories $(K_p < 5^- \text{and } K_p \ge 5^-).$
- Dynamic linear model instead of train model once with fixed dataset.
- Classifier: Ensemble [Deterministic]
- Regressors: Deterministic (GLM, LSTM),
 Probabilistic (Gaussian Process
 Regression, deep GPR)

To get a probabilistic forecast with uncertainty bound we are going to use Nonparametric-Bayesian Methods

Nonparametric Bayesian Methods

1. Parametric:

- Sample data comes from a population that follows a pdf based on a fixed set of parameters — Normal, Beta, Uniform ...
- Assumptions may lead to fitting errors.
- 2. Nonparame known distribution, and we are more interested in
 - Nonpa being forecasting the high K_p (outliers). distribution but with the distribution's parameters unspecified.
 - Better tail behavior, outlier detection.

3. Nonparametric-Bayesian:

-
$$\Pr(\theta|X) = \frac{\Pr(X|\theta)\Pr(\theta)}{\sum \Pr(X|\theta)}$$

Z distribution (standard normal) t-distribution

(n close to 30)

t-distribution

(n smaller than 30)

Classifier: Deterministic

UNCLASSIFIED

Regression: Gaussian Process (NB)

Gaussian Process Regression (Kriging):

 GPR is a another method (stochastic in nature) of interpolation where the model assumes the interpolated data is coming from the multivariate normal distribution

$$\binom{f}{f_*} \sim N \left(\binom{m_X}{m_{X_*}}, \binom{K_{XX}}{K_{X_*X}}, K_{X_*X_*} \right)$$

 Here K is the kernel function. It also assumes some prior about the kernel.

$$-K_{SQ}=\sigma^2e^{-\frac{(x-x')^2}{2l^2}}$$

 Model takes multiple of 27 days training data to minimize RMSE during solar minima and takes 7-14 days of training data during solar maxima.

3h ahead of K_p prediction from July 1st 1995 – August 31st 1995

Regression: Gaussian Process (Cont.)

How it can be used to get 24h forecast: [Still Working]

Regression: Gaussian Process (Cont.)

Issues with GPR:

- Kernel selection
- Low accuracy
- Not able to detect the transients in the system.[Not enough Physics]

Deep GPR: RNN with Memory & GPR

Probabilistic Storm Forecasting

Red: $Pr(e \ge G_1) > 60\%$

Orange: $30\% < \Pr(e \ge G_1) < 60\%$

Green: $Pr(e \ge G_1) < 30\%$

Conclusions & Future Work

Conclusions:

- 1. Gaussian Processes with LSTM is a cutting edge tool for space weather forecast.
- 2. Dynamic linear model shows it takes 27 days to train a model during solar minima and 7-14 days for solar maxima.

Future Work:

- 1. Run models for different conditions and different parameters.
- 2. Use different kernels for GP.
- 3. Introduce GOES X-ray & other dataset to capture more solar transients.

Thank You!!

Dataset: Preprocessing (Backup)

1. 1st Stage Data:

- Omni 1m resolution data and 3h K_p values.
- Used parameters: B_x , B_t , θ_c , v, n, T, P_{dyn} , β , M
- We also used historical $K_{p_{hist}}$
- 3h average data.

2. Use GOES X-ray data:

Regression:

1. Algorithms:

- Basic: Linear Regression, Elastic Net, Bayesian Ridge
- Tree: Decision tree, Extra tee
- Ensemble: Bagging, Ada Boost, Random Forest
- Nearest Neighbors: KNN

Algorithms (RMSE, ρ)	$Tr_w = 27d$	$Tr_w = 54d$	$Tr_w = 81d$
Linear Regression	0.78,0.81	0.78,0.814	0.78,0.818
Elastic Net	0.85,0.775	0.84,0.80	0.85,0.774
Bayesian Ridge	0.78,0.81	0.78,0.814	0.78,0.818
D-tree	0.91,0.744	0.88,0.761	0.86,0.77
E-tree	0.91,0.744	0.88,0.761	0.86,0.77
Bagging	0.87,0.77	0.87,0.77	0.87,0.77
Ada Boosts	0.90,0.77	0.87,0.77	0.87,0.77
Random Forest	0.81,0.77	0.79,0.80	0.79,0.80
KNN	1.18,0.5	1.18,0.5	1.18,0.5

Regression: LSTM (Backup)

1. LSTM: Long-short term memory (Recurrent Neural Network)

- LSTM units are a building unit for layers of a recurrent neural network.
- A common LSTM unit is composed of a cell, an input gate, an output gate and a forget gate.
- Cell is the memory unit.
- Input gate decides which values will be updated.
- Output gate decides which values will be updated at the output side.
- Forget gate discards a part or fully discard previous information.

Algorithms (RMSE, ρ)	$Tr_w = 27d$	$Tr_w = 54d$	$Tr_w = 81d$
LSTM	0.94,0.73	-	-

Model Evaluation: (Backup)

Regression: Deep GPR (With GOES X-ray data)

1. We introduce GOES X-ray datasets:

- Try to capture the transients in the system.
- Captures the solar magnetic activity as a proxy.

Algorithms (RMSE, ρ)	$Tr_w = 27d$	$Tr_w = 54d$	$Tr_w = 81d$
Deep GPR (X-ray)	0.79,0.80	_	-

